Parasites and Vectors

Serological signature of tick-borne pathogens in Scandinavian brown bears over two decades

Background: Anthropogenic disturbances are changing the geographic distribution of ticks and tick-borne diseases. Over the last few decades, the tick Ixodes ricinus has expanded its range and abundance considerably in northern Europe. Concurrently, the incidence of tick-borne diseases, such as Lyme borreliosis and tick-borne encephalitis, has increased in the human populations of the Scandinavian countries. Methods: Wildlife populations can serve as sentinels for changes in the distribution of tick-borne diseases. We used serum samples from a long-term study on the Scandinavian brown bear, Ursus arctos, and standard immunological methods to test whether exposure to Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, and tick-borne encephalitis virus (TBEV) had increased over time. Bears had been sampled over a period of 18 years (1995–2012) from a southern area, where Ixodes ricinus ticks are present, and a northern area where ticks are uncommon or absent. Results: Bears had high levels of IgG antibodies against B. burgdorferi sensu lato but not TBEV. Bears at the southern area had higher values of anti-Borrelia IgG antibodies than bears at the northern area. Over the duration of the study, the value of anti-Borrelia IgG antibodies increased in the southern area but not the northern area. Anti-Borrelia IgG antibodies increased with the age of the bear but declined in the oldest age classes. Conclusions: Our study is consistent with the view that ticks and tick-borne pathogens are expanding their abundance and prevalence in Scandinavia. Long-term serological monitoring of large mammals can provide insight into how anthropogenic disturbances are changing the distribution of ticks and tick-borne diseases.

Environmental contamination with Toxocara eggs: a quantitative approach to estimate the relative contributions of dogs, cats and foxes, and to assess the efficacy of advised interventions in dogs

Background: Environmental contamination with Toxocara eggs is considered the main source of human toxocariasis. The contribution of different groups of hosts to this contamination is largely unknown. Current deworming advices focus mainly on dogs. However, controversy exists about blind deworming regimens for >6-month-old dogs, as most of them do not actually shed Toxocara eggs. We aim to estimate the contribution of different non-juvenile hosts to the environmental Toxocara egg contamination and to assess the effects of different Toxocara-reducing interventions for dogs. Methods: A stochastic model was developed to quantify the relative contribution to the environmental contamination with Toxocara eggs of household dogs, household cats, stray cats, and foxes, all older than 6 months in areas with varying urbanization degrees. The model was built upon an existing model developed by Morgan et al. (2013). We used both original and published data on host density, prevalence and intensity of infection, coprophagic behaviour, faeces disposal by owners, and cats’ outdoor access. Scenario analyses were performed to assess the expected reduction in dogs’ egg output according to different deworming regimens and faeces clean-up compliances. Estimates referred to the Netherlands, a country free of stray dogs. Results: Household dogs accounted for 39 % of the overall egg output of >6-month-old hosts in the Netherlands, followed by stray cats (27 %), household cats (19 %), and foxes (15 %). In urban areas, egg output was dominated by stray cats (81 %). Intervention scenarios revealed that only with a high compliance (90 %) to the four times a year deworming advice, dogs’ contribution would drop from 39 to 28 %. Alternatively, when 50 % of owners would always remove their dogs’ faeces, dogs’ contribution would drop to 20 %. Conclusion: Among final hosts of Toxocara older than 6 months, dogs are the main contributors to the environmental egg contamination, though cats in total (i.e. both owned and stray) transcend this contribution. A higher than expected compliance to deworming advice is necessary to reduce dogs’ egg output meaningfully. Actions focusing solely on household dogs and cats are unlikely to sufficiently reduce environmental contamination with eggs, as stray cats and foxes are also important contributors.

Development of patent Litomosoides sigmodontis infections in semi-susceptible C57BL/6 mice in the absence of adaptive immune responses

Background: One of the most advantageous research aspects of the murine model of filariasis, Litomosoides sigmodontis, is the availability of mouse strains with varying susceptibility to the nematode infection. In C57BL/6 mice, L. sigmodontis worms are largely eliminated in this strain by day 40 post-infection and never produce their offspring, microfilariae (Mf). This provides a unique opportunity to decipher potential immune pathways that are required by filariae to achieve a successful infection. In this study we tracked worm development and patency, the production of microfilariae and thus the transmission life-stage, in Rag2IL-2Rγ −/− mice which are deficient in T, B and NK cell populations.FindingsAlthough worm burden was comparable between wildtype (WT) and Rag2IL-2Rγ −/− mice on d30, by day 72 post-infection, parasites in Rag2IL-2Rγ −/− mice were still in abundance, freely motile and all mice presented high quantities of Mf both at the site of infection, the thoracic cavity (TC), and in peripheral blood. Levels of cytokine (IL-4, IL-6, TNFα) and chemokine (MIP-2, RANTES, Eotaxin) parameters were generally low in the TC of infected Rag2IL-2Rγ −/− mice at both time-points. The frequency of neutrophils however was higher in Rag2IL-2Rγ −/− mice whereas eosinophils and macrophage populations, including alternatively activated macrophages, were elevated in WT controls. Conclusion: Our data highlight that adaptive immune responses prevent the development of patent L. sigmodontis infections in semi-susceptible C57BL/6 mice and suggest that induction of such responses may offer a strategy to prevent transmission of human filariasis.

Two COWP-like cysteine rich proteins from Eimeria nieschulzi (coccidia, apicomplexa) are expressed during sporulation and involved in the sporocyst wall formation

Background: The family of cysteine rich proteins of the oocyst wall (COWPs) originally described in Cryptosporidium can also be found in Toxoplasma gondii (TgOWPs) localised to the oocyst wall as well. Genome sequence analysis of Eimeria suggests that these proteins may also exist in this genus and led us to the assumption that these proteins may also play a role in oocyst wall formation. Methods: In this study, COWP-like encoding sequences had been identified in Eimeria nieschulzi. The predicted gene sequences were subsequently utilized in reporter gene assays to observe time of expression and localisation of the reporter protein in vivo. Results: Both investigated proteins, EnOWP2 and EnOWP6, were expressed during sporulation. The EnOWP2-promoter driven mCherry was found in the cytoplasm and the EnOWP2, respectively EnOWP6, fused to mCherry was initially observed in the extracytoplasmatic space between sporoblast and oocyst wall. This, so far unnamed compartment was designated as circumplasm. Later, the mCherry reporter co-localised with the sporocyst wall of the sporulated oocysts. This observation had been confirmed by confocal microscopy, excystation experiments and IFA. Transcript analysis revealed the intron-exon structure of these genes and confirmed the expression of EnOWP2 and EnOWP6 during sporogony. Conclusions: Our results allow us to assume a role, of both investigated EnOWP proteins, in the sporocyst wall formation of E. nieschulzi. Data mining and sequence comparisons to T. gondii and other Eimeria species allow us to hypothesise a conserved process within the coccidia. A role in oocyst wall formation had not been observed in E. nieschulzi.

Behavioural adaptations of argulid parasites (Crustacea: Branchiura) to major challenges in their life cycle

Fish lice (Argulus spp.) are obligate ectoparasites, which contrary to most aquatic parasites, retain the ability to swim freely throughout the whole of their life. In fish farms, they can quickly increase in numbers and without effective control cause argulosis, which results in the reduced growth and survival of their fish hosts. The morphology of Argulus spp, including their sensory organs, is suitable for both parasitism and free-swimming. By spending a considerable amount of time away from their host, these parasites risk being excessively dispersed, which could endanger mating success. Here we present a review of recent studies on the behaviour of Argulus spp, especially the aggregative behaviour that mitigates the dilution of the parasite population. Aggregation of parasites, which is especially important during the period of reproduction, occurs on different scales and involves both the aggregation of the host and the aggregation of the parasites on the host. The main behavioural adaptations of Argulus spp, including searches for hosts and mates, host manipulation and host choice, are all focused on the fish. As these ectoparasites repeatedly change hosts and inflict skin damage, they can act as vectors for fish pathogens. The development of environmentally friendly measures for the control and prevention of argulosis needs to take into account the behaviour of the parasites.

Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion

Background: Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods: T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results: We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion: The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.

Population regulation in Gyrodactylus salaris – Atlantic salmon ( Salmo salar L.) interactions: testing the paradigm

Background: Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the ‘Atlantic susceptible, Baltic resistant’ paradigm holds as an example of local adaptation. Methods: A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. Results: The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40–50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Conclusions: Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the ‘Baltic-resistant, Atlantic-susceptible’ hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.

Spatio-temporal prevalence of porcine cysticercosis in Madagascar based on meat inspection

Background: Taenia solium cysticercosis is a parasitic meat-borne disease that is highly prevalent in pigs and humans in Africa, but the burden is vastly underestimated due to the lack of official control along the pork commodity chain, which hampers long-term control policies. Methods: The apparent and corrected prevalences of T. solium cysticercosis were investigated in pork carcasses slaughtered and retailed in Antananarivo (Madagascar), thanks to a 12-month monitoring plan in two urban abattoirs. Results: Overall apparent prevalence was estimated at 4.6 % [4.2 – 5.0 %]. The corrected overall prevalence defined as the estimated prevalence after accounting for the sensitivity of meat inspection was 21.03 % [19.18- 22.87 %]. Significant differences among geoclimatic regions were observed only for indigenous pigs, with an apparent prevalence estimated at 7.9 % [6.0 – 9.9 %] in the northern and western regions, 7.3 % [6.0 – 8.6 %] in the central region, and 6.2 % [4.7 – 7.8 %] in the southern region. In the central region, where both exotic and indigenous pigs were surveyed, indigenous pigs were 8.5 times [6.7 – 10.7] more likely to be infected than exotic improved pigs. Urban consumers were more likely to encounter cysticercosis in pork in the rainy season, which is a major at risk period, in particular in December. Differences between abattoirs were also identified. Conclusion: Our results underline the need for improved surveillance and control programmes to limit T. solium cysticercosis in carcasses by introducing a risk-based meat inspection procedure that accounts for the origin and breed of the pigs, and the season.

Emergence of babesiosis in China-Myanmar border areas

E. Vannier and P. J. Krause presented an excellent article on “Babesiosis in China, an emerging threat” in the Lancet Infectious Diseases in December 2014, which updated research on human babesiosis in China. However, a neglected and emerging issue has not been mentioned in EV & PJK’s article, that is the co-infections with B. microti and P. falciparum parasites that exist in syndemic areas, spatially in the China-Myanmar border areas of Yunnan province, China. Therefore, two important issues are addressed in here, including (i) the new emerging infections with Babesia spp. which are normally ignored in malaria endemic areas due to similarities in pathogenic morphology and clinical symptoms, (ii) additional consideration on babesiosis rather than drug-resistant malaria when anti-malaria treatment for the febrile cases in clinics fails.

Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae)

Background: Culex pipiens pipiens plays an important role in the transmission of several vector-borne pathogens such as West Nile virus (WNV) in North America. Laboratory and field studies suggest that this species is ornithophilic but because of genetic hybridization with sibling species during the active mosquito season, it may occasionally feed on mammals. Adult female Cx. p. pipiens undergo a facultative diapause and may serve as an overwintering mechanism for WNV. To determine the effect of diapause on the innate host preference of Cx. p. pipiens emerging from winter hibernation, we conducted host-choice experiments using bird and mammal hosts. Methods: Mosquitoes were reared under non-diapause induced (NDI), diapause induced (DI), and field collected from overwintering (OW) hibernaculae. They were released into a large mesh enclosure housing two lard can traps, and given a choice between feeding on a dove or a rat. Results: Host seeking Cx. p. pipiens were four times more likely to feed on the dove than the rat, regardless of experimental conditions. Under NDI conditions, Cx. p. pipiens were (p < 0.001) more attracted to the bird (79.9 % [75.6-84.1]) than the rat (20.1 [15.9-24.4]). Overwintering mosquitoes and those exposed to DI conditions were also significantly (p < 0.001) more attracted to birds (81.6 % [75.9-87.3]) than to rats (18.5 [12.7-24.2]). Conclusions: We provide new information about the innate host preference of Cx. p. pipiens emerging from diapause in temperate habitats where winter survival is crucial for disease transmission cycles. Although we showed that Cx. p. pipiens prefers an avian to a mammalian host, nearly 20 % of emerging mosquitoes in the spring could feed on mammals. Changes in host preferences may also contain valuable clues about transmission dynamics and subsequent timely interventions by vector control and public health practitioners.

Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test

Background: The genetic variation in the Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene that may compromise the use of pfhrp2-based rapid diagnostic tests (RDTs) for the diagnosis of malaria was assessed in P. falciparum isolates from Yemen. Methods: This study was conducted in Hodeidah and Al-Mahwit governorates, Yemen. A total of 622 individuals with fever were examined for malaria by CareStart™ malaria HRP2-RDT and Giemsa-stained thin and thick blood films. The Pfhrp2 gene was amplified and sequenced from 180 isolates, and subjected to amino acid repeat types analysis. Results: A total of 188 (30.2 %) participants were found positive for P. falciparum by the RDT. Overall, 12 different amino acid repeat types were identified in Yemeni isolates. Six repeat types were detected in all the isolates (100 %) namely types 1, 2, 6, 7, 10 and 12 while types 9 and 11 were not detected in any of the isolates. Moreover, the sensitivity and specificity of the used PfHRP2-based RDTs were high (90.5 % and 96.1 %, respectively). Conclusion: The present study provides data on the genetic variation within the pfhrp2 gene, and its potential impact on the PfHRP2-based RDTs commonly used in Yemen. CareStart™ Malaria HRP2-based RDT showed high sensitivity and specificity in endemic areas of Yemen.

Cost analysis of options for management of African Animal Trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda

Background: Tsetse-transmitted African trypanosomes cause both nagana (African animal Trypanosomiasis-AAT) and sleeping sickness (human African Trypanosomiasis - HAT) across Sub-Saharan Africa. Vector control and chemotherapy are the contemporary methods of tsetse and trypanosomiasis control in this region. In most African countries, including Uganda, veterinary services have been decentralised and privatised. As a result, livestock keepers meet the costs of most of these services. To be sustainable, AAT control programs need to tailor tsetse control to the inelastic budgets of resource-poor small scale farmers. To guide the process of tsetse and AAT control toolkit selection, that now, more than ever before, needs to optimise resources, the costs of different tsetse and trypanosomiasis control options need to be determined. Methods: A detailed costing of the restricted application protocol (RAP) for African trypanosomiasis control in Tororo District was undertaken between June 2012 and December 2013. A full cost calculation approach was used; including all overheads, delivery costs, depreciation and netting out transfer payments to calculate the economic (societal) cost of the intervention. Calculations were undertaken in Microsoft Excel™ without incorporating probabilistic elements. Results: The cost of delivering RAP to the project was US$ 6.89 per animal per year while that of 4 doses of a curative trypanocide per animal per year was US$ 5.69. However, effective tsetse control does not require the application of RAP to all animals. Protecting cattle from trypanosome infections by spraying 25 %, 50 % or 75 % of all cattle in a village costs US$ 1.72, 3.45 and 5.17 per animal per year respectively. Alternatively, a year of a single dose of curative or prophylactic trypanocide treatment plus 50 % RAP would cost US$ 4.87 and US$ 5.23 per animal per year. Pyrethroid insecticides and trypanocides cost 22.4 and 39.1 % of the cost of RAP and chemotherapy respectively. Conclusions: Cost analyses of low cost tsetse control options should include full delivery costs since they constitute 77.6 % of all project costs. The relatively low cost of RAP for AAT control and its collateral impact on tick control make it an attractive option for livestock management by smallholder livestock keepers.

Multilocus microsatellite typing of Leishmania infantum isolates in monitored Leishmania/ HIV coinfected patients

Background: Leishmania infantum is the main etiological agent of both visceral and cutaneous clinical forms of leishmaniasis in the Mediterranean area. Leishmania/HIV coinfection in this area is characterized by a chronic course and frequent recurrences of clinical episodes. The present study using Multilocus Microsatellite Typing (MLMT) analysis, a highly discriminative tool, aimed to genetically characterize L. infantum isolates taken from monitored Leishmania/HIV coinfected patients presenting successive clinical episodes. Methods: In this study, by the analysis of 20 microsatellite loci, we studied the MLMT profiles of 25 L. infantum isolates from 8 Leishmania/HIV coinfected patients who had experienced several clinical episodes. Two to seven isolates per patient were taken before and after treatment, during clinical and non-clinical episodes, with time intervals of 6 days to 29 months. Genetic diversity, clustering and phenetic analyses were performed. Results: MLMT enabled us to study the genetic characteristics of the 25 L. infantum isolates, differentiating 18 genotypes, corresponding to a genotypic diversity of 0.72. Fifteen genotypes were unique in the total sample set and only 3 were repeated, 2 of which were detected in different patients. Both clustering and phylogenetic analyses provided insights into the genetic links between the isolates; in five patients isolates showed clear genetic links: either the genotype was exactly the same or only slightly different. In contrast, the isolates of the other three patients were dispersed in different clusters and some could be the result of mixing between populations. Conclusions: Our data indicated a great MLMT variability between isolates from coinfected patients and no predominant genotype was observed. Despite this, almost all clinical episodes could be interpreted as a relapse rather than a reinfection. The results showed that diverse factors like an intrapatient evolution over time or culture bias could influence the parasite population detected in the patient, making it difficult to differentiate between relapse and reinfection.

Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control

Background: Glossina fuscipes fuscipes is the main vector of African Trypanosomiasis affecting both humans and livestock in Uganda. The human disease (sleeping sickness) manifests itself in two forms: acute and chronic. The Lake Victoria basin in Uganda has the acute form and a history of tsetse re-emergence despite concerted efforts to control tsetse. The government of Uganda has targeted the basin for tsetse eradication. To provide empirical data for this initiative, we screened tsetse flies from the basin for genetic variation at the mitochondrial DNA cytochrome oxidase II (mtDNA COII) gene with the goal of investigating genetic diversity and gene flow among tsetse, tsetse demographic history; and compare these results with results from a previous study based on microsatellite loci data in the same area. Methods: We collected 429 Gff tsetse fly samples from 14 localities in the entire Ugandan portion of the Lake Victoria coast, covering 40,000 km 2 . We performed genetic analyses on them and added data collected for 56 Gff individuals from 4 additional sampling sites in the basin. The 529pb partial mitochondrial DNA cytochrome oxidase II (mtDNA COII) sequences totaling 485 were analysed for genetic differentiation, structuring and demographic history. The results were compared with findings from a previous study based on microsatellite loci data from the basin. Results: The differences within sampling sites explained a significant proportion of the genetic variation. We found three very closely related mtDNA population clusters, which co-occurred in multiple sites. Although Φ ST (0 – 0.592; P < 0.05) and Bayesian analyses suggest some level of weak genetic differentiation, there is no correlation between genetic divergence and geographic distance (r = 0.109, P = 0.185), and demographic tests provide evidence of locality-based demographic history. Conclusion: The mtDNA data analysed here complement inferences made in a previous study based on microsatellite data. Given the differences in mutation rates, mtDNA afforded a look further back in time than microsatellites and revealed that Gff populations were more connected in the past. Microsatellite data revealed more genetic structuring than mtDNA. The differences in connectedness and structuring over time could be related to vector control efforts. Tsetse re-emergence after control interventions may be due to re-invasions from outside the treated areas, which emphasizes the need for an integrated area-wide tsetse eradication strategy for sustainable removal of the tsetse and trypanosomiasis problem from this area.

Research advances in microneme protein 3 of Toxoplasma gondii

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite. It has extensive host populations and is prevalent globally; T. gondii infection can cause a zoonotic parasitic disease. Microneme protein 3 (MIC3) is a secreted protein that is expressed in all stages of the T. gondii life cycle. It has strong immunoreactivity and plays an important role in the recognition, adhesion and invasion of host cells by T. gondii. This article reviews the molecular structure of MIC3, its role in the invasion of host cells by parasites, its relationship with parasite virulence, and its induction of immune protection to lay a solid foundation for an in-depth study of potential diagnostic agents and vaccines for preventing toxoplasmosis.

A new real-time PCR protocol for detection of avian haemosporidians

Background: Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Methods: Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). Results: The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ 2  = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples. Conclusions: Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.

Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda)

Background: Introduced species can modify local host-parasite dynamics by amplifying parasite infection which can ‘spill-back’ to the native fauna, whether they are competent hosts for local parasites, or by acting as parasite sinks with ‘dilution’ of infection decreasing the parasite burden of native hosts. Recently infection by the trematode Bucephalus polymorphus has increased in several European rivers, being attributed to the introduction of intermediate host species from the Ponto-Caspian region. Using a combination of field and experimental data, we evaluated the competence of non-native and native fish as intermediate hosts for B. polymorphus and its role for parasite development in a definitive host. Methods: The density of 0+ juvenile fish (the second intermediate hosts for B. polymorphus) was measured in the River Morava, Czech Republic and fish were screened for natural metacercariae infection. The stomach contents of predatory fish that are definitive hosts of B. polymorphus were examined to assess the importance of non-native gobies for parasite transmission. In semi-natural conditions, parasite establishment, initial survival, and maturity rates in experimentally infected definitive hosts pikeperch Sander lucioperca were measured in flukes recovered from native white bream Abramis bjoerkna and non-native tubenose goby Proterorhinus semilunaris and round goby Neogobius melanostomus. Adult fluke size and egg production was also measured to evaluate the potential effect of intermediate host species on parasite fitness. Results: We detected high natural infection parameters of B. polymorphus in native cyprinids and non-native gobies compared to data from the period prior to goby establishment. Both fish groups are consumed by predatory fish and represent a major component of the littoral fish community. Parasite establishment and adult size in definitive hosts was equivalent among the second intermediate host species, despite a lower size of metacercariae recovered from round gobies. However, development in the definitive host of flukes recovered from gobies was reduced, showing higher mortality, delayed maturity and lower egg production, in comparison with parasites from native hosts. Conclusions: Substantial ‘spill-back’ of B. polymorphus due to higher transmission rates after establishment of non-native gobies was partially buffered by decreased fitness of B. polymorphus that underwent development in gobies.

Eco-epidemiology of visceral leishmaniasis in Ethiopia

Visceral leishmaniasis (VL, Kala-azar) is one of the growing public health challenges in Ethiopia with over 3.2 million people at risk and estimated up to 4000 new cases per year. Historically, VL was known as the diseases of the lowlanders; in the lower and upper Kola agro-ecological zones of Ethiopia. The 2005–07 out breaks in highlands of Libo Kemkem and Fogera, in the Woina Degas, that affected thousands and claimed the life of hundreds misdiagnosed as drug resistance malaria marked that VL is no more the problem of the lowlanders. The Kola (lower and upper) and the Woina Dega are the most productive agroecological zones, supporting both the ongoing and planned expansions of large or small scale agriculture and/or agriculture based industries. Thus, the (re)emergence of VL is not only a public health and social problem but also have a direct implication on the country’s economy and further development. Thus is high time for its control and/or elimination. Yet, the available data seem incomplete to plan for a cost-effective and efficient VL control strategy: there is a need to update data on vector behaviour in specific ecosystems and the roles of domestic animals need to be ascertained. The effectiveness and social acceptability of available vector control tools need be evaluated. There is a need for identifying animal reservoir(s), or establish the absence of zoonosis in Ethiopia. The planning of prevention of (re)emergence and spread of VL to areas adjacent to endemic foci need be supported with information from spatio-temporal mapping. In affected communities, available data showed that their knowledge about VL is generally very low. Thus, well designed studies to identify risk factors, as well as better tools for social mobilization with the understanding of their knowledge, aptitude and practice towards VL are necessary.

Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction

Background: In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. Methods: The study was carried out in Orán, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. Results: qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1 %) and N. americanus (36.4 %) infections. There were 48.6 % of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P < 0.001) respectively. qPCR outperformed microscopy by the largest margin in G. lamblia infections (63.6 % versus 8.1 %, P < 0.05). Polyparasitism was detected more often by qPCR compared to microscopy (64.7 % versus 24.2 %, P < 0.05). Conclusions: Multi-parallel qPCR is a quantitative molecular diagnostic method for common intestinal parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high prevalence of intestinal parasites in a peri-urban area. These results will contribute to more accurate epidemiological survey, refined treatment strategies on a public scale, and better health outcomes in endemic settings.

Efficacy of a proprietary formulation of fipronil/(S)-methoprene/cyphenothrin against Ixodes scapularis tick infestations on dogs

Background: Efficacy of FRONTLINE® TRITAK® For Dogs (fipronil/(S)-methoprene/cyphenothrin, Merial, Inc., Duluth, GA) against Ixodes scapularis was evaluated in two separate, but concurrent laboratory studies. Methods: One day after topical treatment with placebo or active, dogs (n = 24) were infested with 50 unfed adult Ixodes scapularis ticks, with repeat infestations on Days 7, 14, 21 and 28. The number of live ticks was counted at 6 hours post-infestation in the first study (n = 12) and at 24 hours post-infestation in the second study (n = 12). Results: Observed efficacies in study 1 were 93-99 % at 6 hour assessments on Day 1 through Day 28 and in the second study, 98-100 % at 24 hour assessments, occurring on Day 2 through Day 29. Conclusions: A single dose of FRONTLINE® TRITAK® For Dogs (fipronil/(S)-methoprene/cyphenothrin) (0.67 ml or 1.34 ml) prevented the establishment of a new infestation following treatment, as well as the repeated weekly re-infestations with Ixodes scapularis ticks, for 4 weeks.